A simple Blog for wyx I've been down the bottle hoping.
BZOJ2815 ZJOI2012 灾难 构造+LCA+树形dp+拓扑排序
发表于: | 分类: Oi | 评论:0 | 阅读:137

阿米巴是小强的好朋友。
阿米巴和小强在草原上捉蚂蚱。小强突然想,如果蚂蚱被他们捉灭绝了,那么吃蚂蚱的小鸟就会饿死,而捕食小鸟的猛禽也会跟着灭绝,从而引发一系列的生态灾难。
学过生物的阿米巴告诉小强,草原是一个极其稳定的生态系统。如果蚂蚱灭绝了,小鸟照样可以吃别的虫子,所以一个物种的灭绝并不一定会引发重大的灾难。
我们现在从专业一点的角度来看这个问题。我们用一种叫做食物网的有向图来描述生物之间的关系: 一个食物网有 N个点,代表 N 种生物,如果生物 x 可以吃生物 y,那么从 y向 x 连一个有向边。
这个图没有环。
图中有一些点没有连出边,这些点代表的生物都是生产者,可以通过光合作用来生存; 而有连出边的点代表的都是消费者,它们必须通过吃其他生物来生存。

如果某个消费者的所有食物都灭绝了,它会跟着灭绝。

我们定义一个生物在食物网中的“灾难值”为,如果它突然灭绝,那么会跟
着一起灭绝的生物的种数。

给定一个食物网,你要求出每个生物的灾难值。

【输入格式】
输入文件 catas.in 的第一行是一个正整数 N,表示生物的种数。生物从 1 标
号到 N。
接下来 N 行,每行描述了一个生物可以吃的其他生物的列表,格式为用空
格隔开的若干个数字,每个数字表示一种生物的标号,最后一个数字是 0 表示列
表的结束。
【输出格式】
输出文件 catas.out 包含N行,每行一个整数,表示每个生物的灾难值。
【样例输入】
5
0
1 0
1 0
2 3 0
2 0
【样例输出】
4
1
0
0
0
【样例说明】
样例输入描述了题目描述中举的例子。
【数据规模】
对 50%的数据,N ≤ 10000。
对 100%的数据,1 ≤ N ≤ 65534。
输入文件的大小不超过 1M。保证输入的食物网没有环。


BZ上的题干丢掉了,这里补充一下……

首先,我们可以对图进行拓扑排序,但是这样的复杂度是$O(n^2)$的,让我们难以接受
我们要对他进行改造

还是,我们先拓扑排序,然后考虑,在什么样的情况下,他会被干掉

我们假设他的食物分别为$food1,food2...foodx$

只有当他们的Lca被干掉的时候,他才可能死掉,否则的话必然存在一种食物存活,使得他也能活下去

我们可以按照拓扑序讲这些点插入到一个新的树里,每次把一个点$x$插入到一个在原图中与他相连接的所有的点的$LCA$下,随后进行一次简单的树形$dp$,他的$size-1$就是答案

但是这里有一个小问题,就是动态的$LCA$,但是由于只是不断地在树上插入叶子节点,我们可以利用倍增,而省去了$LCT$的麻烦

时间复杂度$O(nlogm+n+m)$

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <queue>
const int N = 240000+5;
const int M = 240000+5;
using namespace std;

int stack[N];
int top;

struct graph
{
    int head[N],n,size[N];
    int in[N],fa[N][20],depth[N];
    queue <int> q;

    struct line
    {
        int next,to;
        line () {}
        line (int _next,int _to)
        :next(_next),to(_to){}
    }edge[M];

    inline void add(int x,int y)
    {
        static int cnt = 0;
        edge[++cnt] = line(head[x],y);
        head[x] = cnt;
    }

    void Topological_sorting()
    {
        for(int i=1;i<=n;++i)
            if(!in[i])
                q.push(i);
        while(!q.empty())
        {
            int tt = q.front();
            q.pop();
            stack[++top] = tt;
            for(int i=head[tt];i;i=edge[i].next)
                if(!--in[edge[i].to])
                    q.push(edge[i].to);
        }
    }

    int lca(int x,int y)
    {
        if(x==-1)return y;
        if(depth[x] < depth[y])swap(x,y);
        int tt = depth[x] - depth[y];
        for(int i=0;i<20;++i)
            if((1<<i)&tt)
                x = fa[x][i];
        if(x==y)return x;
        for(int i=19;~i;--i)
            if(fa[x][i]!=fa[y][i])
                x = fa[x][i],y = fa[y][i];
        return fa[x][0];
    }

    void Pre(int x)
    {
        for(int i=1;i<20;++i)
            fa[x][i] = fa[fa[x][i-1]][i-1];
    }

    void DFS(int x)
    {
        size[x] = 1;
        
        for(int i=head[x];i;i=edge[i].next)
            if(edge[i].to!=fa[x][0])
                DFS(edge[i].to),size[x] += size[edge[i].to];
    }

}G1,G2;

void build()
{
    for(int tmp = top;tmp>0;--tmp)
    {
        int x = stack[tmp];
        int fa = -1;    
        for(int i=G1.head[x];i;i=G1.edge[i].next)
            fa = G2.lca(fa,G1.edge[i].to);
        if(fa == -1) fa = 0;
        G2.add(fa,x);
        G2.depth[x] = G2.depth[fa] + 1;
        G2.fa[x][0] = fa;
        G2.Pre(x); 
    }
}

inline int read()
{
    int x=0,f=1;char ch = getchar();
    while(ch < '0' || ch > '9'){if(ch == '-')f=-1;ch = getchar();}
    while(ch >='0' && ch <='9'){x=(x<<1)+(x<<3)+ch-'0';ch = getchar();}
    return x*f;
}

int main()
{
    int n = read();
    G1.n = G2.n = n;
    for(int i=1;i<=n;++i)
    {
        int tmp = read();
        while(tmp)
        {
            G1.add(i,tmp);
            G1.in[tmp]++;
            tmp = read();
        }
    }
    G1.Topological_sorting();
//  for(int i=1;i<=top;++i) 
//      cout << stack[i] << endl;
    build();
    G2.DFS(0);
    for(int i=1;i<=n;++i)
        printf("%d\n",G2.size[i]-1);
}

Title - Artist
0:00

站点地图 网站地图
Copyright © 2015-2017 A simple Blog for wyx
Powered by Typecho自豪的采用Sgreen主题

TOP